Learn R Programming

RandomFields (version 3.0.5)

Advanced Max-stable random fields: Simulation examples of advanced Max-Stable Random Fields

Description

Here, an advanced example is given used to test whether the algorithms work correctly.

Arguments

References

Strokorb, K. (2013) Ph.D. thesis.

See Also

RPmaxstable

Examples

Run this code
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again


n <- if (interactive()) 5000 else 3
step <- if (interactive()) 0.2 else 2


model <- RMexp(var=1.62 / 2) 
x <- seq(0, 5, step)
y <- seq(0, 10, step)


auswertung <- function(simu, model, threshold=2) {
  simu <- as.array(simu)
  below <- simu <= threshold
  freq <- rowMeans(below)
  meanfreq <- mean(freq)
  Print(freq, meanfreq, exp(-1/threshold)) ## univariate kontrolle
  both <- t(below) & below[1, ]
  ecf <-  2-log(colMeans(both)) / log(meanfreq)
  plot(x, ecf)

  ## alle 3 Linien ergeben das Gleiche:
  spC <- RFoptions()$general$spConform
  RFoptions(spConform = FALSE)
  lines(x, m1 <- RFcov(RMbrownresnick(model), x), col="yellow")
  lines(x, m2 <- RFcov(RMschlather(RMbr2eg(model)), x), col="red", lty=2) # OK
  m3 <- RFcov(RMbernoulli(RMbr2bg(model), centred=FALSE), x)
  lines(x, m3, col="blue", lty=3)
  RFoptions(spConform = spC)

  erfc <- function(x) 2 * pnorm(x, 0, sd=1/sqrt(2), lower=FALSE)
  lines(x, m4 <- erfc(0.45 * sqrt(1-exp(-x))), lty=4)
 
  ## theoretical curves correct?
  if (!all.equal(m1, m2) || !all.equal(m1, m3) || !all.equal(m1, m4))
    stop("calculation error")

  if ( (n <- ncol(simu)) >= 1000) {
    ## margins correct?
    mar.threshold <- 4 * 0.5 / sqrt(n)
    mmar.threshold <- 3 * 0.5 / sqrt(n)
    Print(abs(freq - exp(-1/threshold)), mar.threshold)
    if (abs(freq[sample(length(freq), 1)] - exp(-1/threshold)) > mar.threshold)
      stop("marginal distribution wrong? (single margin)")
    if (abs(meanfreq - exp(-1/threshold)) > mmar.threshold)
      stop("marginal distribution wrong? (mean margin)")
 
    ## extremal correlation function correct?
    meanthreshold <- 4 / sqrt(n)
    maxthreshold <- 2 * sqrt(nrow(simu)) / sqrt(n)
    Print(abs(ecf - m1), meanthreshold, maxthreshold)
    if (mean(abs(ecf - m2)) > meanthreshold)
      stop("ecf not correct? (mean deviation too large)")
    if (max(abs(ecf - m2)) > maxthreshold)
      stop("ecf not correct? (max deviation too large)")
  }
}


## Brown-Resnick
z <- RFsimulate(RPbrownresnick(model), y, y)
plot(z)
simu <- RFsimulate(RPbrownresnick(model), x, n=n,  max_gauss=5)
auswertung(simu, model)



## Extremal Gaussian
z <- RFsimulate(RPschlather(RMbr2eg(model)), y, y)
plot(z)
simu <- RFsimulate(RPschlather(RMbr2eg(model)), x,  n=n)
auswertung(simu, model)


## Extremal Binary Gaussian
binary.model <- RPbernoulli(RMbr2bg(model))
z <- RFsimulate(RPschlather(binary.model), y, y)
plot(z)
simu <- RFsimulate(RPschlather(binary.model), x, n=n, max_gauss=5)
auswertung(simu, model)


\dontrun{ ## OK!
zaehler <- 0
repeat {
  Print(zaehler)
  zaehler <- zaehler + 1
  simu <- RFsimulate(RPschlather(RMbr2eg(model)), x, spConform=FALSE, n=n,
                    pch="")
  auswertung(simu, model)
}
}



FinalizeExample()

Run the code above in your browser using DataLab